If it's not what You are looking for type in the equation solver your own equation and let us solve it.
115=4x^2/(1.00-x)(2.00-x)
We move all terms to the left:
115-(4x^2/(1.00-x)(2.00-x))=0
Domain of the equation: (1.00-x)(2.00-x))!=0We add all the numbers together, and all the variables
We move all terms containing x to the left, all other terms to the right
-x)(2.00-x)!=-1.00
x∈R
-(4x^2/(-1x+1)(-1x+2))+115=0
We multiply parentheses ..
-(4x^2/(+x^2-2x-1x+2))+115=0
We multiply all the terms by the denominator
-(4x^2+115*(+x^2-2x-1x+2))=0
We calculate terms in parentheses: -(4x^2+115*(+x^2-2x-1x+2)), so:We get rid of parentheses
4x^2+115*(+x^2-2x-1x+2)
We multiply parentheses
4x^2+115x^2-230x-115x+230
We add all the numbers together, and all the variables
119x^2-345x+230
Back to the equation:
-(119x^2-345x+230)
-119x^2+345x-230=0
a = -119; b = 345; c = -230;
Δ = b2-4ac
Δ = 3452-4·(-119)·(-230)
Δ = 9545
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(345)-\sqrt{9545}}{2*-119}=\frac{-345-\sqrt{9545}}{-238} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(345)+\sqrt{9545}}{2*-119}=\frac{-345+\sqrt{9545}}{-238} $
| x-1/20=1/10-x | | 12=1.1x-4.3 | | -3r-15=4 | | 0,0695*x^2+0,008*x=0,064 | | 25+3x=5x | | Y’’-4y’-12y=0 | | 6r-12=-18 | | ƒ(n)=1.25n+6.25;25 | | f(-6)=3/4•-3 | | 25x+16x=57+312 | | 9c=8c-9 | | -7x-5=1 | | 2x+40=9x-1 | | n/20=16 | | 25x+16x=57+5312 | | 4x-2=13(25)+12 | | 5y+6=-6 | | 8q-8=72+8 | | y-3=-48 | | -3a+21+8a=4a-6a | | R(x)=6x-C(x)=0.001x^2+0.7x+80 | | 8q+12=2(3q-2) | | R(x)=6x,C(x)=0.001x^2+0.7x+80 | | 0=8t-0.8t^2 | | 10=8t-0.8t^2 | | 4-9x+3x=8+9x-7 | | 2/x+4/2x=-2 | | 3x+6-x=6+3x=8 | | 79=2x+6 | | 94=344-x | | x-8.3=15.9 | | q²+6q=-5 |